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Orbital flow around a circular cylinder. Part 2. 
Attached flow at larger amplitudes 

By JOHN R. CHAPLIN 
Ocean Engineering Research Centre, Department of Civil Engineering, City University, 

Loridon EClV OHB, UK 

(Received 21 September 1990 and in revised form 17 January 1992) 

A time-stepping numerical model of uniform circular orbital flow around a cylinder 
provides results which are compared with the steady-state predictions of a boundary- 
layer solution by Riley. At small amplitudes of motion excellent agreement is found 
in most respects, but in the numerical model the outer recirculating flow and related 
components of loading do not reach a steady state after any finite time. At a Stokes 
parameter p of 500, the boundary-layer approach remains reasonably accurate for 
amplitudes of motion up to about 8% of the cylinder diameter; for amplitudes up 
to twice this at the same value of /3 the flow remains largely attached. The strength 
of the outer recirculating flow is enhanced by nonlinear interactions, but the 
computed nonlinear loading exceeds that observed in experiments. Flow visual- 
ization shows a three-dimensional structure in the flow, and it is argued that this 
has an important effect on the loading that cannot yet be predicted. A computed 
force component a t  a frequency of about 30% of that of the ambient flow is related 
to the retrogressive motion of vortex structures around the cylinder. 

1. Introduction 
This paper is concerned with the flow around a cylinder which is driven (without 

rotation) around a circular path, normal to its axis, in fluid initially a t  rest. The flow 
is related to that around a stationary horizontal cylinder beneath waves, aligned so 
that its axis is parallel with the wave crests. It is indeed the limiting case for waves 
in deep water, when the cylinder diameter is small in comparison both to its 
submergence and to the wavelength. I n  the past, orbital flow around a cylinder has 
received much less attention than the rectilinear oscillatory case, where i t  is found 
that providing that the motion remains attached, potential flow remains a good basis 
for force predictions. I n  orbital motion on the other hand, secondary flows generate 
substantial contributions to the loading even a t  very small amplitudes (Chaplin 
1984b; Stansby & Smith 1991). 

With the aim of developing a better detailed understanding of attached orbital 
flow, a numerical solution is described below for the case where the flow is not 
dominated by the effects of separation. Applications include horizontal pontoons of 
semi-submersibles and tension leg platforms (Otsuka, Ikeda & Tanaka 1990 ; Chaplin 
& Retzler 1991), and the ‘Bristol cylinder’ wave energy device (Evans 1976); in these 
cases predictions of loading and response traditionally neglect viscosity. 

A steady-state solution for the most important components of the flow around a 
circular cylinder executing circular orbital motion was obtained by Riley (1971). 
Longuet-Higgins (1970) had previously shown that steady streaming induces a 
uniform circulation around the cylinder, with the same sense of motion as that of the 
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ambient flow. For the non-uniform case of a horizontal cylinder beneath waves, 
measurements of particle drift velocities a t  the outer limit of the boundary layer were 
subsequently found to  be compatible with the predicted steady streaming (Chaplin 
1984u), but measured forces did not agree well with the implications of a uniform 
circulation of corresponding strength (Chaplin 19843). Application of the Kutta- 
Joukowski theorem, extended to unsteady flow (see Chaplin 1992), suggests that 
the effect of the induced circulation would be a cancellation of part of the inertia 
force, so that the effective inertia coefficient C, would depart from the potential flow 
value of 2, in accordance with 

C ,  = 2 - 6K,2/x2, (1.1) 

where K ,  is the Keulegan-Carpenter number. Though substantial reductions in C, 
have been found in experiments in waves a t  low Keulegan-Carpenter numbers 
(Chaplin i984h; Otsuka et al., 1990) the results are generally not in quantitative 
agreement with ( 1 . 1 )  ; in most cases the observed reduction in C, is weaker than that 
indicated above: in some cases at small submergences it is stronger. 

In an attempt to  understand the importance of the non-uniformities of wave- 
induced orbital flow on the circulation, this case was studied with a boundary-layer 
approach by Chaplin (1992). Though it was found that the relative submergence of 
the cylinder and the diameter-to-wavelength ratio had significant effects on the 
strength of the induced circulation, the changes were not sufficient fully to account 
for the experimental observations. 

The boundary-layer solution by Riley (1971) does not extend to a sufficiently high 
order to provide a direct prediction of non-linear loading due to secondary flow. In 
any case, for larger amplitudes of motion (or wave heights), but before separation 
occurs, the solution will become less accurate, as neglected higher-order terms 
become more important. A third limitation on the application of the boundary-layer 
solution arises from the fact that it refers to the final steady state, and therefore may 
not be appropriate physically a t  any finite time. In  the steady-state solution there 
is uniform circulation around the cylinder, whereas Stansby & Smith (1991) have 
pointed out that  at any finite time the circulation must tend to zero a t  large distances 
from the cylinder. Stansby & Smith modelled the flow using the random-vortex 
rnethod and, in qualitative agreement with experiments, found a substantial 
reduction in C, with increasing K,. The purpose of the work described in the present 
paper is to explore in more detail the limits of validity of boundary-layer solutions, 
and to  study the way in which the outer recirculating flow (and any associated 
loading) grows with time. 

The flow was computed with a Navier-Stokes time-stepping code which is 
described in $2. Sections 3 and 4 present the results which, where appropriate, are in 
excellent agreement with Riley’s boundary-layer solution. I n  some respects however 
they reveal differences that can be attributed to  the truncation of Riley’s series 
expansions. At larger amplitudes of motion, with the flow still attached, other 
nonlinearities become apparent. The secondary flow is enhanced, and as the 
Keulegan-Carpenter number approaches 1.5, the viscosity-induced loading negates 
almost one-half of the potential flow force for the case of a stationary cylinder. 
Comparisons with available experimental results are discussed in Q 5, which 
introduces also some new flow visualization, showing for the first time a three- 
dimensional structure in the flow around a horizontal cylinder beneath waves. 
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FTGXJRE 1 .  Definition sketch for t,he numerical moclcl. 

2. The Navier-Stokes code 
The solution is obtained for the region shown in figure 1, and is developed in terms 

of the stream function and vorticity, whose variations in the tangential direction at  
each time step are expressed a t  each discrete radius as a Fourier series of spatial 
frequency components. This approach (a generalization of that used by Pate1 1976) 
was chosen for the present problem since for the more general case of a horizontal 
cylinder beneath waves, the conditions at the outer boundary may be readily 
expressed in terms of their spatial frequency components. Also, the computed results 
are obtained in a form in which they may be compared directly with individual terms 
in Riley's solution of the boundary-layer problem. 

The reference frame is fixed on the cylinder; for the particular case of uniform 
circular orbital flow, some economies could be obtained by using a frame which is 
rotating with the direction of the ambient flow. We choose however the more general 
case, since the purpose of subsequent computations was to study non-uniform flows, 
which do not offer the same symmetry. 

Taking as reference length the cylinder radius c, as reference velocity the 
magnitude of the particle velocity U a t  the cylinder location in the undisturbed flow, 
the vorticity transport equation may be expressed for polar co-ordinates fixed on the 
cylinder as 

(2.1) 

The stream function is related to the radial and tangential velocity components by 

1 a$ a$ 
ar .  

v =-- r r a e >  " o = - -  

The vorticity (measured positive anticlockwise) satisfies 

5 = -V", 
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and Re is the Reynolds number 2Uclv. The amplitude of the motion is expressed in 
terms of the Keulegan-Carpenter number K ,  = UT/2c, where T is the period, and 

= Re/K,. 
The stream function and vorticity are expanded in terms of spatial frequoncy 

components : 
N 

$(&, 8, t )  = Z f n ( t >  t )  cos n8+ g n ( t ,  t )  sin n@, 

g(t,8,t)  = - C Fn(5,t)cosn8+G,(t,t)sinnB, 

(2.4) 

(2.5) 

n=o 
N 

n=o 

where 5 = lnr. Equation (2.3) implies 

Substituting (2.4) and (2.5) into (2.1), and separating the frequency components 
leads to 

Go = 0,  

where% denotes aF/at, etc. Equations (2.6)-(2.10) represent the core of the numerical 
method. The variables Fo, F, . . .JL, G,, 0,. .. G,, f,, fi .. . f,, g,, g, . . . g,, are functions 
only of 5 and t ,  and are discretized a t  points corresponding t o  constant increments 
A&, i.e. exponentially increasing increments in r .  The solution advances through time 
increments At, at each step updating P and G with finite-difference approximations 
to (2.7)-(2.10) using central differences in a fully implicit iterative scheme. The 
updated f and g are found from (2.6), each of which reduces to a tridiagonal system 
a t  each frequency. 

The boundary conditions on the cylinder 6 = 0, are f, = g n  = 0, for all n, and a 
Woods condition for the vorticity, 

(2.11) 
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(where subscripts w and 1 refer to a point on the wall and a point one cell away), 
applied at all frequencies. 

On the outer boundary fl  = IAfl, the vorticity at all frequencies, and the stream 
function at frequencies n = 2 , 3 ,  . . . , N ,  are put equal to zero. At frequency n = 1,  the 
stream function on the outer boundary is made to match the tangential flow 
corresponding to the undisturbed orbital motion : 

fi(IAk, t )  = cos (7tt/Kc), gl(IAE, t )  = sin (nt/K,). (2.12) 

Equations (2.12) imply a clockwise orbital flow, resembling the case of a wave train 
passing from left to right. 

A potential advantage of this spectral method for the present problem is that the 
oscillatory flow can be used to drive the solution from the outer boundary of the 
computational domain, while a separate boundary condition is available there for 
the zero-frequency flow f,,. This component of the flow originates from within the 
boundary layeT on the cylinder, and must be allowed to spread outwards without 
unnatural disturbance. However, in all computations the magnitude of the zero- 
frequency flow near the outer boundary was extremely small a t  all times, and 
the outer boundary condition adopted was simply i3fo/a[ = 0, representing the 
requirement that the circulation tend to zero at all finite times a t  large distances 
from the cylinder (Wu 1981; Stansby & Smith 1991). Tests were carried out to 
confirm that the outer boundary was in fact far enough away to avoid any significant 
effects on the computed flow. 

Forces and moments on the cylinder may be computed from the surface vorticity 
and its radial gradient. On the cylinder surface, the pressure and shear stress are 
given by 

(2.13) 

where the reference stress is taken as $ppUZ. The components of force and moment 
experienced by the cylinder are 

(2.14) 

(2.15) 

(2.16) 

all evaluated a t  r = 1 ;  F’, = aFJaT, etc. Subscripts p and s refer to components 
due to  pressure and shear stress respectively, and M is the moment, measured 
anticlockwise. Computed forces due to pressure are presented below after subtraction 
of the potential flow force 47t2/Kc. 

For each condition that was computed, checks were carried out to ensure that the 
radius of the computational domain rmax, the number of frequency components, and 
the discretization intervals did not significantly affect the most sensitive result of 
interest, namely the part of the pressure-induced force that is due to viscosity. At 
small K,  values this is a very small proportion of the total force, and (because it is 
derived from the gradient of vorticity on the cylinder surface) it is also very sensitive 
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Kc P rmax N 
0.1 10 300 5 
0.5 500 8 9  
1.0 500 16 13 
1.5 500 16 30 
0.1 1000 7 5  

TABLE 1. Radius of the computational domain, and number of frequencies for representative cases. 

t o  discretization errors. In  all cases, the time step At was less than 1/800th of the 
period of the oscillation, and 

A t  < 2 (2 At/Re);.  (2.17) 

Computational parameters for representative cases are given in table 1. The 
number of spatial frequency components N was always sufficient to ensure that the 
magnitude of the smallest component was less than 0.1 % of that of the largest. Run- 
times on a Sun Sparcstation were about I x N 2  x s per time step. For each case, 
the amplitude of the motion was ramped up linearly over one period. 

3. Results for small K ,  
3.1. Riley’s solution 

At small Keulegan-Carpenter numbers and high values of p, one may expect 
computed results to agree well with the boundary-layer solution in all respects except 
those associated with transient processes. Some comparisons are described below, 
but first we point out the relevant features of Riley’s boundary-layer solution. 

The solution is obtained in terms of matched asymptotic expansions for the stream 
function in the inner (boundary layer) and outer (predominantly irrotational) 
regions. We summarize Riley’s results here and in the Appendix in terms of the 
various components of the tangential velocity, and the viscosity-induced forces. For 
the inner region, the tangential velocity may be written 

V,= U,+ x U,cosn$+Vnsinnq5, 
fl-1 

with a similar series for the outer region, 

vg = uo + x u, cos n$ + v, sin n$, 
n=l 

where 9 = 8+wt  (see figure 1). The velocity components U,, etc. are normalized with 
reference to U; they represent parts of Riley’s double series for the complete flow, 
and are set out in the Appendix in terms of the parameters p and K,. The radial 
ordinate for the inner region is 

(3.3) 
1 
2 

‘I = - ( r -  1 )  (np):. 

The outer flow u,, represents the potential vortex of circulation 

To = 6K, (3.4) 
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identified by Longuet-Higgins (1970), and is of particular interest here in view of its 
connection with nonlinear loading. 

The loading due to viscosity on the cylinder may be separated into forw 
components that are either in phase with the velocity or in phave with the 
acceleration; in each case the force is due partly to pressure and partly to  shear 
stress. The four force components are accordingly denoted Fvp, Fvs. Fap and Fas. There 
is also a moment M .  

Steady-state forces may be derived from Riley’s solution for the stream function 
in the inner region. On this basis 

and the moment is given by 

M = - 87t - + o(p-t) + O(K,). 
( 7 t 2  

(3.5) 

(3.6) 

(3.7) 

Though an outer circulation is present (associated with u,,), its effect does not appear 
in (3.5)-(3.8) since the inner expansion was not extended to the term O(K:) 
(originally O(e2)  in equation (19) of Riley 1971). This is the term through which the 
effect of the circulation on the loading would be first expected. Were the consequences 
of the circulation to be included, it would be reasonable to look for a reduction in Fap ,  
due to a process similar to the Magnus effect. 

3.2. Computed results 
I n  the numerical solution, there is no distinction between the inner and outer regions. 
But for clarity, the two parts of the analytical solution are compared separately with 
the numerical results in figure 2. I n  each region, each component of the first three 
spatial frequency components is compared, a t  K, = 0.1 and at /3 = 10,100, and 1000. 
(At Kc = 0.1, the amplitude of the motion is about 1.6% of the cylinder diameter.) 

I n  studying these comparisons, it must be remembered that the boundary-layer 
solution refers to the steady state at infinite time. At frequencies 1 and 2, on figure 
2 (c-j) are superimposed numerical results (for /3 = 10 and 1000) a t  times 
corresponding to four and 60 cycles of oscillation. Very little change occurs in these 
components over this interval, suggesting that the numerical results are in these 
respects very close indeed to a steady state. On the other hand, the zero-frequency 
component undergoes continuous change, as discussed below. 

At frequencies 1 and 2, all numerical results shown in figure 2 converge as expected 
towards the analytical solution as the value of ,8 is increased. But particularly close 
to  the boundary and at  frequency 2 there are still significant differences at  /3 = 1000 
arising from absent O ( @ )  terms in the boundary-layer expansion. 

Unlike the components a t  spatial frequencies I and 2, the uniform flow uo spreads 
continuously with time, and is evidently in this respect uncoupled from other parts 
of the motion. Its computed distributions after various times a t  /i’ = 10 and 1000 are 
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FIGURE 2. Tangential velocity components computed after four ( -  - - - -) and 60 (.-.-- .--. ) cycles a t  
K,  = 0.1 compared with predictions from Riley (1971): (a )  and ( b )  show components at spatial 
frequency n = 0;  (c) to (f) those at  spatial frequency = 1 ; (9 )  to (j) those at spatial frequency 
n = 2. In each case the left and right diagrams show respectively the velocity profiles for Riley's 
outer and inner regions. 

plotted in figure 3, and suggest a slow convergence with time towards the 
distribution given by the boundary-layer solution ( (A 1 and A 6)) ,  which in the outer 
region is a potential vortex. 

With reference to the steady-state solution, Riley (1971) noted that in the outer 
region, the cylinder has the same effect as one rotating on its axis with angular 
velocity 3KC/7c. The present results allow this analogy to be tested also in the 
transient state. The flow a t  time t generated by a cylinder suddenly brought into 
rotation at  t = 0 with a surface speed us = 3Kc/7c, in infinite fluid otherwise a t  rest, 
is given by 

J,(m-) q ( x )  - Y,(xr) J,(x) dx 
(3.9) JW + m4 

(Goldstein 1932), using velocity and length scales as before. J1 and are first-order 
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FIGURE 3. Velocity components at K ,  = 0.1, at spatial frequency n = 0;  and (a) /3 = 10, (b )  
1000: -.-.-.-.- , orbital flow; --- , rotating cylinder. 

Bessel functions of the first and second kind. Figure 3 includes the velocity 
distributions (3.9) calculated for the same times as those a t  which the orbital flow has 
been computed. Outside the boundary layer, the respective velocity distributions 
converge as /? is increased, suggesting that a t  finite times, as well as in the steady 
state, the cylinder generates the same flow a t  large distances as one rotating with 
surface speed 3K,/n. 

Computed forces and moments a t  the end of the fourth cycle a t  K,  = 0.01 and 0.1 
are compared in tables 2 (a, 6 )  with the implications of (3.5) (3.8). Forces due to shear 
(Fus and Fas) are in very close agreement throughout. At p = 500 and K ,  = 0.1 they 
depart from (3.6) and (3.7) by less than 0.16% (At /3 = 483 Stansby & Smith found 
the corresponding difference to be about 1.7 YO.) For K ,  = 0.1 the present results for. 
ELp, Fap and M are plotted in figure 4, showing that Fvp also comes very close to  the 
boundary-layer solution a t  the higher values of /3. Like F,, and Fas, fiLP quickly 
achieved a steady state; values a t  the end of the fourth and a t  the end of the 60th 
cycle differed by less than 0.17 % at @ =  10 and 1000. Computed results for Fap and 
M on the other hand did not become steady even after 60 cycles, as shown in figure 
5 for p = 1000. Both these components are closely related to the outer recirculating 
flow. 

The moment exerted on the cylinder is equal to the rate of change of the integral, 
over the whole fluid, of the second moment of vorticity (Wu 1981). Only the 
recirculating motion f,, can contribute to  this, sinca all other components integrate 
to zero. I n  the transient state the moment is therefore closely linked with the 
changing distribution of the zero-frequency flow discussed above, and no steady state 
can be expected after any finite time. I n  the steady state corresponding t o  infinite 
time, the existence of a finite moment (3.8) acting on the cylinder implies a continual 
increase in the total angular momentum of the fluid. This is not incompatible with 
the purely periodic nature of the steady-state motion, since the total angular 
momentum of the fluid would then be infinite anyway. (The related case of a single 
spinning cylinder is discussed by Batchelor 1967, p. 203.) 

The negative drift in Fa, shown in figure 5 may also be related to the outwards 
spread of the recirculating flow, since the growing tangential velocity outside the 
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FIGURE 4. Forces due to pressure, and the moment, computed after four cycles a t  K ,  = 0.1. 
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FIGURE 5.  Time dependence of Fa, and M for K,  = 0.1 and ,!? = 1000. 

boundary layer continually enhances the pressure difference across the cylinder in 
the direction normal to that of the incident ambient velocity. Formally, the lift is 
proportional to the rate of change of the first moment of the vorticity field (Wu 
1981). By the Kutta-Joukowski theorem extended to  unsteady flow (Chaplin 1992) 
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the steady-state circulation (3.4) would suggest a contribution - 12K, to Pup 
(corresponding to the reduction of 6K;/x2 in C ,  given in (1 .1)) .  As expectcxl, no 
steady state was achieved in the computat,ions, but after 60 cycles, FaP reached 6.01 7 ,  
or 1O.26Kc less than the value given by (3.6).  (It should be noted that (3.4) neglects 
terms of order ppi that may be significant at /j' = 1000.) 

The results presented above have demonstrahed the accuracy of the numerical 
model; in the next section it is applied a t  higher Keulegan-Carpenter numbers, 
where nonlinear viscous effects become much more important, and where there is no 
applicable analyt.ica1 solution. 

4. Results for higher Keulegan-Carpenter numbers 
This section is concerned with a range of higher K ,  values, for which the flow is 

nevertheless predominantly attached. We focus on /3 = 500, which, as has been 
shown above, is sufficiently high for many features of the flow to  have lost all but 
their primary dependence on ,13. It is also in a range for practical purposes of 
experimentation. 

Figure 6 shows the first three spatial frequency components of the tangential flow 
after eight cycles, for K, = 0.5, 1.0 and 1.5. At K ,  = 0.5, the flow remains for the most 
part in reasonable agreement with Riley's solution. Also, the outer recirculating flow 
again matches that due to a rotating cylinder in initially still fluid (figure 6 a ) .  A t  
K ,  = 1 .O most components of the flow reveal significant changes. At K ,  = 1.5 major 
new contributions have appeared, arid there is a substantial increase in the thickness 
of the boundary layer. The outer recirculating flow, evidently enhanced by nonlinear 
interactions, is now considerably stronger than that corresponding to the rotating 
cylinder case, suggesting a related growth in nonlinear loading. At K ,  = 1.5, the 
maximum value of U,, in figure 6 ( a )  is about 5 % greater than the magnitude of the 
incident flow. Significant contributions also appear for the first time a t  higher 
frequencies, though these are not shown here. 

For the higher Keulegan-Carpenter numbers, the force components are plotted 
against time in figure 7,  showing that in most cases they have not reached a steady 
state. The forre components after eight cycles are plotted against K ,  in figure 8, 
which shows that the greatest departures from the boundary-layer solution again 
occur in Fup and M .  These are the components shown above to be most strongly 
related to the outer recirculating flow. Also plotted in figure 8 is the force represented 
by (l . l) ,  which corresponds to  t h e  steady-state circulation (3.4). This differs from the 
computed result because the outer flow has a nonlinear component as mentioned 
above, and because the flow has not approached a steady state. Results derived from 
Stansby & Smith (1991) using a very different numerical model with an impulsive 
start are shown to be in good agreement with the present data. 

For K, above 1.3, there was a very rapid increase in the number of frequency 
components required to  satisfy the criteria of $2, and at  K ,  = 1.6 the computational 
demands of the solution at  this degree of precision became impracticable. Slow 
oscillations first appeared in the force records (figure 7 )  a t  K, = 1.3, and became 
stronger thereafter. They have roughly equal amplitudes in both orthogonal 
directions, and a frequency about 30% less than that of the ambient motion; the 
component that appears in Pap leads that in FvP by about 90". This suggests that the 
flow is not entirely phase locaked tjo the ambient motion, but has a cwmponent that 
progresses around the cylinder in the opposite direction. A seyuenve of stream 
function and vorticity plots is shown in figure 9 for K ,  = 1.5, a t  time intervals 
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FIGURE 6(u-f). For caption see facing page. 
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FIGURE 6. Velocity components computed after eight cycles (----) for = 500 at K,  = 0.5, 1 .O and 
1.5, compared with predictions from Riley (1971). The layout of the diagrams is the same as in 
figure 2. In (a)  the long-dashed line shows results for a rotating cylinder, and results of Otsuka 
et al. (1990) at K ,  = 1.0 (0) and K ,  = 1.5 (0). 

corresponding to one-eighth of the orbital period. The orientation of the diagrams 
has been altered so that the flow in each case is seen as coming from the left. Also, 
the radial distance outside the cylinder in the vorticity plots is magnified 5 times. 
The vorticity structures on the upper side of the cylinder proceed anticlockwise, in 
the direction opposite to that of the ambient flow. Since the vorticity in this region 
is predominantly clockwise, the motion can be interpreted as the result of interaction 
between centres of vorticity and their images in the cylinder surface. As they 
approach the upstream side of the cylinder, regions of clockwise vorticity become 
weaker, suggesting cancellation with vorticity of opposite sense of rotation that 
originates on the other side. This retrogressive motion of vorticity can be associated 
with the computed non-harmonic component in the loading. In a fixed reference 
frame, the force component would have a frequency of about 30% of that of the 
ambient flow. A different process by which vorticity becomes 'wrapped around' the 
cylinder is described by Stansby & Smith (1991). 
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FIGURE 9. Stream function and vorticity contours for K,  = 1.5, ,8 = 500. The orientation of the 
figures is such that the flow is directed from the left in all cases. In the vorticity plots, the radial 
distance outside the cylinder is magnified 5 times. 

Some computations carried out a t  p = 5000 showed the same behaviour, but in 
this case slow oscillations in the force records first appeared a t  K, = 0.9. 

5 .  Experimental comparisons 
Comparable force measurements have been made on a deeply submerged 

stationary horizontal cylinder beneath waves by Chaplin (198427) and Otsuka et al. 
(1990), and on a cylinder driven around a circular path by Chaplin & Retzler (1991). 
In the experiments the inertia coefficient approximately followed a relationship of 
the form of equation (l.l), but with 6/n2 replaced by a factor of between 0.16 and 
0.21. These values indicate a rather weaker nonlinear force than that computed 
above, which points to a factor of about 0.38. But it should be noted that there were 
important differences between the numerical and experimental conditions. In the 
experiments p was in the range 1000 to  10000, and in most cases the flow would have 
been partly turbulent (on the basis of evidence from Sarpkaya 1986 for rectilinear 
oscillatory flow). Second, the computations assume that also the mean features of the 
flow are two-dimensional. Third, the numerical results do not in general refer to a 
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FIGURE 10. General arrangement for the flow visualization experiments. 

FIGURE 11. The motion around the cylinder at  K,  = 0.3, showing the first indication 
of axial motion. 

steady state, whereas the measurements were made after the loading had become 
periodic. 

From velocity measurements made with a propeller meter, Otsuka et al. inferred 
the circulation around a horizontal cylinder beneath waves, a t  a radius of 1.15. 
Velocity components 74, interpolated from their results at K ,  = 1 .O arid 1.5, shown in 
figure 6 ( a ) ,  indicate a recirculating current of the same order as those computed here, 
but the data points otherwise offer little scope for comparison. 

With the aim of investigating one of the differences between the experiments and 
numerical models, some simple flow visualization was carried out to  reveal the 
existence of any three-dimensional structure in the flow around a horizontal cylinder 
beneath waves. The sketch in figure 10 shows the layout of the experiments in which 
solder was precipitated, by the method described by Honji (1981) and Sarpkaya 
(1986), to  provide flow visualization. A 50 mm diameter cylinder spanned the 
750 mm width of a wave flume, in which the mean water depth was 500 mm. The 
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FIGURE 12. Toroidal vortices around the cylinder at K ,  = 0.65. 

cylinder was simply jammed between the glass sidewalls of the flume, at  an elevation 
of 300 mm above the bed, thus avoiding the disturbance to the flow that would be 
created by other means of support. A thin solder wire was stretched along the side 
of the cylinder away from the wave generator, and energized a t  about 13 V. A beam 
of light parallel to the cylinder axis illuminated the flow, which was viewed from 
above, through the water surface. 

As successive waves passed, the eEect of steady streaming was to sweep the 
precipitate around the cylinder circumference. Figure 1 1  shows the flow a t  K ,  = 0.3, 
with a wave period of 1 s. The striations in the precipitate parallel to the cylinder axis 
result from the oscillatory nature of the flow past the solder wire. In  this case the flow 
was nearly two-dimensional, but there is evidence of some motion in the axial 
direction. A t  larger amplitudes this developed into a definite structure of toroidal 
vortices of alternating senses of rotation, as shown in figure 12 for K, = 0.65. 

The orbital motion in this experiment was neither uniform nor circular; the orbit 
elipticity was 0.85. The importance of the instability in other cases cannot yet be 
assessed, but it is likely to have a significant effect on the strength of the outer 
recirculating flow which, as shown above, is closely related to the nonlinear 
components of loading. J t  may be concluded that in a t  least some cases, numerical 
models which assume that the flow is two-dimensional cannot be expected t o  provide 
results that are in good agreement with measurements. 

6. Conclusions 
Numerical modelling of two-dimensional time-dependent circular orbital laminar 

flow around a circular cylinder has produced results that in most respects converge 
towards those of an analytical solution by Riley (1971), as p is increased. The outer 
recirculating flow however never reaches the steady state predicted by Riley, and 
related force components (namely the pressure force in anti-phase with the ambient 
acceleration, and the moment) likewise never reach stable values after any finite 
time. Indeed at all times the outer flow a t  high values of /? is nearly identical to that 
generated by a cylinder rotating with surface speed 3KJn in fluid otherwise a t  rest, 
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At /3 = 500, Riley's solution remains reasonably accurate up to K, = 0.5, at, which 
the amplitude of the motion is about 8 % of the cylinder diameter. As K ,  is increased 
further, the recirculating flow becomes disproportionately stronger, leading to an 
enhancement of the viscous loading, which at  K ,  = 1.5 (but before gross separation 
occurs) negates almost one-half of the potential flow force. 

At K ,  between 1.3 and 1.5, the retrogressive movement of vortex structures 
around the cylinder is responsible for a component of loading at  a frequency of about 
30% of that  of the ambient motion. This may be of concern in the context of 
compliant offshore structures. 

Numerical results suggest a nonlinear force rather stronger than that observed in 
experiments. However, visualization experiments have revealed for the first time a 
three-dimensional structure that must in practice have an important effect on the 
outer flow, and therefore on the related nonlinear loading. The axial component of 
motion is absent in the numerical modelling, which has nevertheless served to 
develop an understanding of the flow, and which will provide a basis for future 
computations in three-dimensions. 

Part of this work was carried out with support from the Offshore Safety Division 
of the Health and Safety Executive. The author is indebted to Norman Riley, Peter 
Stansby and Bassam Younis for helpful discussions, and to Chris Retzler for 
assistance with the experiments. 

Appendix. Velocity components derived from Riley (1971) 
For the purposes of the present paper, Riley's results have been expressed in a 

different form. The tangential velocity components defined in (3.1) and (3.2) may be 
written as follows. Tn each case the highest orders of the truncated terms are 
indicated. 

For the outer region: 

u g  = Kc[-(3/nr)+O(/3-~)]+O(p1)+O(K:) ,  (A 1) 

u1 = ( 2 / r 2 )  ( ~ P ) - ~ + O ( P - ~ ) + O ( K : ) ,  

w1 = - 1  - ( i / r 2 ) - ( 2 / r 2 )  (TC/++O(P-~)+O(K:), 

u2 = O ( p ' )  + O(K:), v2 = O(p-') + O ( g ) .  

(A 2) 

(A 3) 

(A 41, (A 5) 

For the inner region, where the ordinate 7 is defined in (3.3): 

Uo = K,{ [2 (2  COB 7 - sin 7) e-7 + 2( cos 7 + sin 7) 7e-Y - e-'7 - 3]/n 

U ,  = - 2e-7 sin 7 + 2 ~ 1 -  (cos 7 + sin 7) e-7 + rle-"sin 71 (n/+ 

V, = 2 ( e - ~ c o s 7 - ~ ) + ~ [ ~ 7 - 1  + ( c o s q - s i n q ) e - ~ - ~ e - ~ c o s ~ 1  (np)-+ 

U, = K,{[e-T cos 7 - (cos 7 +sin 7)  7e-T- e-dz7 cos 4 2 7 1  2/n + o(p-4)) 

+ o(pt)> + o(P-') + OF:), (A 6) 

+ O W 1 )  + O(K3, (A 7) 

+ O ( P ' )  + O(K3,  (A 8) 

+ O(P-') + O(K3,  (A 9) 
V,  = KJLe-7 sin 7 + (cos 7 -sin 7) Te-7 -e-d2? sin 4 2 7 1  2/n + 0(/3-+)> 

+ O(p-') + O(K,2). (A 10) 



418 J .  R. Chaplin 

R E F E R E N C E S  

BATCHELOR, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press. 
CHAPLIN, J .  R. 1984a Mass transport around a horizontal cylinder beneath waves. J .  Fluid Mech. 

CHAPLIN, J.  B. 1984b Forces on a horizontal cylinder beneath waves. J .  FluidMech. 147,44%464. 
CHAPLIN, J. R .  1992 Orbital flow around a circular cylinder. Part 1. Steady streaming in non- 

uniform conditions. J .  Fluid Mech. 237, 395-41 1. 
CHAPLIN, ,J. R. & RETZLER, C. H. 1991 Non-linear pontoon loading. Report to the Department of 

Energy, TA 93/22/399. 
EVANS, I). V .  1976 A theory for wave-power absorption by oscillating bodies. J .  Fluid Mech. 77, 

1-25. 
GOLDSTEIN, 8. 1932 Some two-dimensional diffusion problems with circular symmetry. Proc. 

Lond. Math. SOC. (2) 34, 51-88. 
HONJI, H. 1981 Rtreaked flow around an oscillating circular cylinder. J .  FluidMech. 107, 509-520. 
LONCUET-HIGGINS, M. S. 1970 Steady currents induced by oscillations round islands. J .  Fluid 

Mech. 42, 701-720. 
OTSUKA, K., IKEDA, Y. & TANAKA, N. 1990 Viscous forces acting on a horizontal circular cylinder 

in regular and irregular waves. Proc. 9th Intl Conf. on Offshore Mechanics and Arctic 
Engineering, vol. 1, pp. 12S138. 

PATEL, V. A. 1976 Time-dependent solutions of the viscous incompressible flow past a circular 
cylinder by the method of series truncation. Computers Fluids 4, 13-27. 

RILEY, N. 1971 Stirring of a viscous fluid. 2. Angew. Math. Phys. 22, 645-653. 
SARPKAYA, T. 1986 Force on a circular cylinder in viscous oscillatory flow at low Keulegan- 

STANSBY, P. K. & SMITH, P. A. I991 Viscous forces on a circular cylinder in orbital flow at low 

Wu, J. C. 1981 Aerodynamic force and moment in viscous flows. A I A A  J .  19, 432441. 

140, 175-187. 

Carpenter numbers. J .  Fluid Mech. 165, 61-71. 

Keulegan-Carpenter numbers. J .  Fluid Mech. 229, 159-171. 




